7 resultados para Experimental-models

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many different models have been postulated over the years for sizing of feeder drives; these models have different bases, some rationally based and others more rule-of-thumb. Experience of Jenike & Johanson and likewise of The Wolfson Centre in trouble-shooting feeder drives has shown that drive powers are often poorly matched, so there is clearly still some way to go towards establishing a universally-used reliable approach. This paper presents an on-going programme of work designed to measure feeder forces experimentally on a purpose designed testing rig, and to compare these against some of the best known available models, and also against a full size installation. One aspect which is novel is the monitoring of the transition between the “filling stress field” load on the feeder and the “flowing stress field” load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic process of melting different materials in a cold crucible is being studied experimentally with parallel numerical modelling work. The numerical simulation uses a variety of complementing models: finite volume, integral equation and pseudo-spectral methods combined to achieve the accurate description of the dynamic melting process. Results show the temperature history of the melting process with a comparison of the experimental and computed heat losses in the various parts of the equipment. The free surface visual observations are compared to the numerically predicted surface shapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronics industry and the problems associated with the cooling of microelectronic equipment are developing rapidly. Thermal engineers now find it necessary to consider the complex area of equipment cooling at some level. This continually growing industry also faces heightened pressure from consumers to provide electronic product miniaturization, which in itself increases the demand for accurate thermal management predictions to assure product reliability. Computational fluid dynamics (CFD) is considered a powerful and almost essential tool for the design, development and optimization of engineering applications. CFD is now widely used within the electronics packaging design community to thermally characterize the performance of both the electronic component and system environment. This paper discusses CFD results for a large variety of investigated turbulence models. Comparison against experimental data illustrates the predictive accuracy of currently used models and highlights the growing demand for greater mathematical modelling accuracy with regards to thermal characterization. Also a newly formulated low Reynolds number (i.e. transitional) turbulence model is proposed with emphasis on hybrid techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat is extracted away from an electronic package by convection, conduction, and/or radiation. The amount of heat extracted by forced convection using air is highly dependent on the characteristics of the airflow around the package which includes its velocity and direction. Turbulence in the air is also important and is required to be modeled accurately in thermal design codes that use computational fluid dynamics (CFD). During air cooling the flow can be classified as laminar, transitional, or turbulent. In electronics systems, the flow around the packages is usually in the transition region, which lies between laminar and turbulent flow. This requires a low-Reynolds number numerical model to fully capture the impact of turbulence on the fluid flow calculations. This paper provides comparisons between a number of turbulence models with experimental data. These models included the distance from the nearest wall and the local velocity (LVEL), Wolfshtein, Norris and Reynolds, k-ε, k-ω, shear-stress transport (SST), and kε/kl models. Results show that in terms of the fluid flow calculations most of the models capture the difficult wake recirculation region behind the package reasonably well, although for packages whose heights cause a high degree of recirculation behind the package the SST model appears to struggle. The paper also demonstrates the sensitivity of the models to changes in the mesh density; this study is aimed specifically at thermal design engineers as mesh independent simulations are rarely conducted in an industrial environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the investigations into the moisture induced failures in flip-chip-on-flex interconnections with anisotropic conductive films (ACF). Both experimental and modeling methods were applied. In the experiments, the contact resistance was used as a quality indicator and was measured continuously during the accelerated tests (autoclave tests). The temperature, relative humidity and the pressure were set at 121°C, 100%RH, 1atm respectively. The contact resistance of the ACF joints increased during the tests and nearly 25% of the joints were found to be open after 168 hours' testing time. Visible conduction gaps between the adhesive and substrate pads were observed. Cracks at the adhesive/flex interface were also found. It is believed that the swelling effect of the adhesive and the water penetration along the adhesive/flex interface are the main causes of this contact degradation. Another finding from the experimental work was that the ACF interconnections that had undergone the reflow treatment were more sensitive to the moisture and showed worse reliability during the tests. For a better understanding of the experimental results, 3D finite element (FE) models were built and a macro-micro modeling method was used to determine the moisture diffusion and moisture-induced stresses inside the ACF joints. Modeling results are consistent with the findings in the experimental work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A particle swarm optimisation approach is used to determine the accuracy and experimental relevance of six disparate cure kinetics models. The cure processes of two commercially available thermosetting polymer materials utilised in microelectronics manufacturing applications have been studied using a differential scanning calorimetry system. Numerical models have been fitted to the experimental data using a particle swarm optimisation algorithm which enables the ultimate accuracy of each of the models to be determined. The particle swarm optimisation approach to model fitting proves to be relatively rapid and effective in determining the optimal coefficient set for the cure kinetics models. Results indicate that the singlestep autocatalytic model is able to represent the curing process more accurately than more complex model, with ultimate accuracy likely to be limited by inaccuracies in the processing of the experimental data.